Exposure of Lemna minor L. to gentian violet or Congo red is associated with changes in the biosynthesis pathway of biogenic amines

In the literature, there is a lack of data on the effect of gentian violet (GV) and congo red (CR) dyes on the biosynthesis pathway of biogenic amines (BAs) in Lemna minor L. (common duckweed). This plant species is an important link in the food chain. Both dyes inhibited growth, biomass yield and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-09, Vol.254, p.126752-126752, Article 126752
Hauptverfasser: Adomas, Barbara, Sikorski, Łukasz, Bęś, Agnieszka, Warmiński, Kazimierz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the literature, there is a lack of data on the effect of gentian violet (GV) and congo red (CR) dyes on the biosynthesis pathway of biogenic amines (BAs) in Lemna minor L. (common duckweed). This plant species is an important link in the food chain. Both dyes inhibited growth, biomass yield and the biosynthesis of chlorophyll a in common duckweed. The predicted toxic units demonstrated that GV had a more toxic effect on the growth rate and biomass yield of common duckweed than CR. Decarboxylase activity in the biosynthesis of BAs in common duckweed is also a useful indicator for evaluating the toxicity of both dyes. Gentian violet also exerted more phytotoxic effects on the analyzed biochemical features of common duckweed because it changed the putrescine (Put) biosynthesis pathway, increased tyramine content 1.6 fold, inhibited the activity of S-adenosylmethionine decarboxylase by 40% and the activity of ornithine decarboxylase (ODC) by 80%. Tyrosine decarboxylase (TDC) was most active in plants exposed to the highest concentration of GV. Similarly to control plants, in common duckweed exposed to CR, Put was synthesized from ornithine; however, spermidine content was 86% higher, Put content was 51% lower, and ODC activity was 86% lower. [Display omitted] •Gentian violet dye was more phytotoxic to Lemna minor L. than congo red.•Toxic units showed that gentian violet inhibited growth more than congo red.•Gentian violet in water changed the biosynthesis of putrescine in L. minor.•Control plants and those exposed to congo red synthesized putrescine from ornithine.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.126752