Enhancing Delta E Effect at High Temperatures of Galfenol/Ti/Single-Crystal Diamond Resonators for Magnetic Sensing
A conventional wisdom is that the sensing properties of magnetic sensors at high temperatures will be degraded due to the materials’ deterioration. Here, the concept of high-temperature enhancing magnetic sensing is proposed based on the hybrid structure of SCD MEMS resonator functionalized with a h...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (20), p.23155-23164 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A conventional wisdom is that the sensing properties of magnetic sensors at high temperatures will be degraded due to the materials’ deterioration. Here, the concept of high-temperature enhancing magnetic sensing is proposed based on the hybrid structure of SCD MEMS resonator functionalized with a high thermal-stable ferromagnetic galfenol (FeGa) film. The delta E effect of the magnetostrictive FeGa thin film on Ti/SCD cantilevers is investigated by varying the operating temperature from 300 to 773 K upon external magnetic fields. The multilayer structure magnetic sensor presents a high sensitivity of 71.1 Hz/mT and a low noise level of 10 nT/√Hz at 773 K for frequencies higher than 7.5 kHz. The high-temperature magnetic sensing performance exceeds those of the reported magnetic sensors. Furthermore, an anomalous behavior is observed on the delta E effect, which exhibits a positive temperature dependence with the law of T n . Based on the resonance frequency shift of the FeGa/Ti/SCD cantilever, the strain coupling in the multilayers of the FeGa/Ti/SCD structure under a magnetic field is strengthened with increasing temperature. The delta E effect shows a strong relationship with the azimuthal angle, θ, as a sine function at 300 and 773 K. This work provides a strategy to develop magnetic sensors for high-temperature applications with performance superior to that of the present ones. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c06593 |