Appraising drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods

The continuous deterioration of drinking water quality supplies by several anthropogenic activities is a serious global challenge in recent times. In this current study, the drinking water quality of Ikem rural agricultural area (southeastern Nigeria) was assessed using chemometrics and multiple ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2020-05, Vol.192 (5), p.308-308, Article 308
Hauptverfasser: Egbueri, Johnbosco C., Ezugwu, Chimankpam K., Ameh, Peter D., Unigwe, Chinanu O., Ayejoto, Daniel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The continuous deterioration of drinking water quality supplies by several anthropogenic activities is a serious global challenge in recent times. In this current study, the drinking water quality of Ikem rural agricultural area (southeastern Nigeria) was assessed using chemometrics and multiple indexical methods. Twenty-five groundwater samples were collected from hand-dug wells and analyzed for physicochemical parameters such as pH, major ions, and heavy metals. The pH of the samples (which ranged between 5.2 and 6.7) indicated that waters were slightly acidic. Cations and anions (except for phosphate) were within their respective standard limits. Except for Mn, heavy metals were also found to be below their maximum allowable limits. Factor analysis identified both geogenic processes and anthropogenic inputs as possible origins of the analyzed physicochemical parameters. Modified heavy metal index, geoaccumulation index, and overall index of pollution revealed that all the hand-dug wells were in excellent condition, and hence safe for drinking purposes. However, pollution load index, water quality index (WQI), and entropy-weighted water quality index (EWQI) revealed that some wells (about 8–12%) were slightly contaminated, and hence are placed in good water category. A hierarchical cluster analysis (HCA) was performed based on the integration of the WQI and EWQI results. The HCA revealed two major quality categories of the samples. While the first cluster comprises of samples classified as excellent drinking water by both WQI and EWQI models, the second cluster comprises of about 12% samples which were identified as good water by either the WQI or EWQI.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-020-08277-3