Antibacterial and remineralizing nanocomposite inhibit root caries biofilms and protect root dentin hardness at the margins
Senior patients have a high incidence of tooth root caries. The objectives of this study were to: (1) develop a bioactive composite with calcium (Ca) and phosphate (P) ion-release and antibacterial capabilities via nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methac...
Gespeichert in:
Veröffentlicht in: | Journal of dentistry 2020-06, Vol.97, p.103344-103344, Article 103344 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Senior patients have a high incidence of tooth root caries. The objectives of this study were to: (1) develop a bioactive composite with calcium (Ca) and phosphate (P) ion-release and antibacterial capabilities via nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM); (2) inhibit root biofilms of Streptococcus mutans, Lactobacillus acidophilus and Candida albicans in a biofilm-based recurrent root caries model to protect root dentin hardness under biofilms for the first time.
Five groups were tested: (1) Heliomolar nanocomposite (Commercial control); (2) Experimental composite control (0% NACP, 0% DMAHDM); (3) Remineralizing composite (30% NACP); (4) Antibacterial composite (3% DMAHDM); (5) Remineralizing and antibacterial composite (NACP + DMAHDM). Colony-forming units (CFU), lactic acid and polysaccharide of biofilms were evaluated. Demineralization of bovine root dentin with restorations was induced via multi-species biofilms, and root dentin hardness was measured.
Adding NACP and DMAHDM into composite did not compromise the mechanical properties (p > 0.05). Biofilm lactic acid, polysaccharides and CFU were greatly reduced via DMAHDM (p |
---|---|
ISSN: | 0300-5712 1879-176X |
DOI: | 10.1016/j.jdent.2020.103344 |