Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C
Arylazopyrazole derivatives based on four core structures (4pzMe, 3pzH, 4pzH, and 4pzH-F2) and functionalized with a dodecanoate group were demonstrated to store thermal energy in their metastable Z isomer liquid phase and release the energy by optically triggered crystallization at −30 °C for the f...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-05, Vol.142 (19), p.8688-8695 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arylazopyrazole derivatives based on four core structures (4pzMe, 3pzH, 4pzH, and 4pzH-F2) and functionalized with a dodecanoate group were demonstrated to store thermal energy in their metastable Z isomer liquid phase and release the energy by optically triggered crystallization at −30 °C for the first time. Three heat storage–release schemes were discovered involving different activation methods (optical, thermal, or combined) for generating liquid-state Z isomers capable of storing thermal energy. Visible light irradiation induced the selective crystallization of the liquid phase via Z-to-E isomerization, and the latent heat stored in the liquid Z isomers was preserved for longer than 2 weeks unless optically triggered. Up to 92 kJ/mol of thermal energy was stored in the compounds, demonstrating remarkable thermal stability of Z isomers at high temperatures and liquid-phase stability at temperatures below 0 °C. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c00374 |