Arylazopyrazoles for Long-Term Thermal Energy Storage and Optically Triggered Heat Release below 0 °C

Arylazopyrazole derivatives based on four core structures (4pzMe, 3pzH, 4pzH, and 4pzH-F2) and functionalized with a dodecanoate group were demonstrated to store thermal energy in their metastable Z isomer liquid phase and release the energy by optically triggered crystallization at −30 °C for the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-05, Vol.142 (19), p.8688-8695
Hauptverfasser: Gerkman, Mihael A, Gibson, Rosina S. L, Calbo, Joaquín, Shi, Yuran, Fuchter, Matthew J, Han, Grace G. D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arylazopyrazole derivatives based on four core structures (4pzMe, 3pzH, 4pzH, and 4pzH-F2) and functionalized with a dodecanoate group were demonstrated to store thermal energy in their metastable Z isomer liquid phase and release the energy by optically triggered crystallization at −30 °C for the first time. Three heat storage–release schemes were discovered involving different activation methods (optical, thermal, or combined) for generating liquid-state Z isomers capable of storing thermal energy. Visible light irradiation induced the selective crystallization of the liquid phase via Z-to-E isomerization, and the latent heat stored in the liquid Z isomers was preserved for longer than 2 weeks unless optically triggered. Up to 92 kJ/mol of thermal energy was stored in the compounds, demonstrating remarkable thermal stability of Z isomers at high temperatures and liquid-phase stability at temperatures below 0 °C.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c00374