Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss
In this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PC61BM and ITC6-4F, with a polymer donor (PM6). This reveals that the addition of PC61BM not only enhances the electron mobility of the derived BHJ blend but also fa...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (19), p.21633-21640 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PC61BM and ITC6-4F, with a polymer donor (PM6). This reveals that the addition of PC61BM not only enhances the electron mobility of the derived BHJ blend but also facilitates exciton dissociation, resulting in a more balanced charge transport alongside with reduced trap-assisted charge recombination. Consequently, as compared to the pristine PM6/ITC6-4F device, the optimal ternary OSC is revealed to deliver an improved power conversion efficiency (PCE) of 15.11% with a boosted J SC, V OC, and fill factor (FF) simultaneously. The resultant V OC and FF are among the highest values recorded in the literature for the ternary OSCs with a PCE exceeding 15%. This result thus suggests that besides improving the charge transport characteristics in devices, incorporating a fullerene derivative as part of the acceptor can also improve the resultant V OC, which can reduce the energy loss to realize efficient organic photovoltaics. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c03484 |