Guest/Host Complexes of Octa Acid and Amphiphilic Benzylidene-3-methylimidazolidinones Exchange Hosts within the NMR Time Scale

Cavitand octa acid (OA) is established to form a stable capsular assembly with one or two hydrophobic guest molecules (1:2 or 2:2 guest/host complex). Examples are known in which the guest molecule tumbles within the capsule without disrupting the structure of the capsuleplex. This process makes the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2020-04, Vol.5 (14), p.8230-8241
Hauptverfasser: Samanta, Shampa R, Baldridge, Anthony, Tolbert, Laren M, Ramamurthy, Vaidhyanathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cavitand octa acid (OA) is established to form a stable capsular assembly with one or two hydrophobic guest molecules (1:2 or 2:2 guest/host complex). Examples are known in which the guest molecule tumbles within the capsule without disrupting the structure of the capsuleplex. This process makes the two OA molecules that form the capsule magnetically equivalent. In this study, we have examined the dynamics of capsules that host amphiphilic benzylidene-3-methylimidazolidinone molecules as guests. In these capsuleplexes, although the guest does not tumble, the two OA molecules become magnetically equivalent because the two OA molecules that form the capsule exchange their positions in the NMR time scale. This is equivalent to the content of the capsule remaining stationary while the capsule swirls around it. Benzylidene-3-methylimidazolidinones form both 1:1 and 1:2 supramolecular complexes with cavitand OA. Two-dimensional NMR, ROESY, and NOESY data suggest that in a 300 ms time scale, the two halves of the capsule exchange between themselves and with free OA. The conclusion drawn here provides valuable information concerning the stability of the OA capsuleplex and cavitandplex that is used as the well-defined space to control the excited-state chemistry and dynamics of confined guest molecules.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c00523