Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO2 Reduction to Formate by Controlled Surface Sn Electrodeposition
The efficient CO2 electrochemical reduction reaction (CO2RR) relies not only on the development of selective/active catalysts but also on the advanced electrode configuration to solve the critical issue of poor CO2 mass transport and derived sluggish cathodic reaction kinetics. In this work, to achi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (19), p.21670-21681 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The efficient CO2 electrochemical reduction reaction (CO2RR) relies not only on the development of selective/active catalysts but also on the advanced electrode configuration to solve the critical issue of poor CO2 mass transport and derived sluggish cathodic reaction kinetics. In this work, to achieve a favorable reaction rate and product selectivity, we designed and synthesized an asymmetric porous Cu hollow fiber gas diffusion electrode (HFGDE) with controlled Sn surface electrodeposition. The HFGDE derived from the optimal Sn electrodeposition condition exhibited a formate Faradaic efficiency (FE) of 78% and a current density of 88 mA cm–2 at −1.2 V versus reversible hydrogen electrode, which are more than 2 times higher than those from the pristine Cu HFGDE. The achieved performance outperformed most of the other Sn-based GDEs, indicating the creation of sufficient contact among CO2, electrolyte, and electrode catalyst through the design of the hollow fiber pore structure and catalytic active sites. The enhancement of formate production selectivity and the suppression of the hydrogen by-product were attributed to the optimized ratio of SnO x species on the electrode surface. The best performance was seen in the HFGDE with the highest Sn2+/Sn4+ (120 s deposition), likely due to the modulating effect of the Cu substrate via electron donation with Sn species. The selectivity control strategy developed in the asymmetric HFGDE provides an efficient and facile method to stimulate selective electrochemical reactions in which the gas-phase reactant with low solubility is involved. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c03681 |