Biochemical changes of the pericellular matrix and spatial chondrocyte organization—Two highly interconnected hallmarks of osteoarthritis

During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image‐based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of orthopaedic research 2020-10, Vol.38 (10), p.2170-2180
Hauptverfasser: Danalache, Marina, Erler, Anna‐Lisa, Wolfgart, Julius M., Schwitalle, Maik, Hofmann, Ulf K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image‐based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization. The aim of this study was to characterize this PCM‐degradation based on different cellular patterns. We additionally wanted to identify the earliest time point of PCM‐breakdown in this physiopathological model. To this end, cartilage samples were selected according to their predominant cellular pattern. Qualitative analysis of PCM degradation was performed immunohistochemically by analysing five main PCM components: collagen type VI, perlecan, collagen type III, biglycan, and fibrillin‐1 (n = 6 patients). Their protein content was quantified by enzyme‐linked immunosorbent assay (127 patients). Accompanying spatial cellular rearrangement, the PCM is progressively destroyed, with a pericellular signal loss in fluorescence microscopy for collagen type VI, perlecan, and biglycan. This loss in protein signal is accompanied by a reduction in total protein content from single strings to big clusters (P 
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.24699