Development of Hybrid Pseudohalide Tin Perovskites for Highly Stable Carbon-Electrode Solar Cells
Tin-based perovskites degrade rapidly upon interaction with water and oxygen in air because Sn–I bonds are weak. To address this issue, we developed novel tin perovskites, FASnI(3–x)(SCN) x (x = 0, 1, 2, or 3), by employing a pseudohalide, thiocyanate (SCN–), as a replacement for halides and as an i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-05, Vol.12 (19), p.21739-21747 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tin-based perovskites degrade rapidly upon interaction with water and oxygen in air because Sn–I bonds are weak. To address this issue, we developed novel tin perovskites, FASnI(3–x)(SCN) x (x = 0, 1, 2, or 3), by employing a pseudohalide, thiocyanate (SCN–), as a replacement for halides and as an inhibitor to suppress the Sn2+/Sn4+ oxidation. The structural and electronic properties of pseudohalide tin perovskites in this series were explored with quantum-chemical calculations by employing the plane-wave density functional theory (DFT) method; the corresponding results are consistent with the experimental results. Carbon-based perovskite devices fabricated with tin perovskite FASnI(SCN)2 showed about a threefold enhancement of the device efficiency (2.4%) relative to that of the best FASnI3-based device (0.9%), which we attribute to the improved suppression of the formation of Sn4+, retarded charge recombination, enhanced hydrophobicity, and stronger interactions between Sn and thiocyanate for FASnI(SCN)2 than those for FASnI3. After the incorporation of phenylethyleneammonium iodide (PEAI, 10%) and ethylenediammonium diiodide (EDAI2, 5%) as coadditives, the FASnI(SCN)2 device gave the best photovoltaic performance with J SC = 20.17 mA cm–2, V OC = 322 mV, fill factor (FF) = 0.574, and overall efficiency of power conversion PCE = 3.7%. Moreover, these pseudohalide-containing devices display negligible photocurrent–voltage hysteresis and great stability in ambient air conditions. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c03704 |