Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6
Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (r...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2020-07, Vol.253, p.117660-7, Article 117660 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (rBMSCs). The present study aimed to assess the influence of microRNA miR-186 on the proliferation and OD potential of rBMSCs.
OD was performed and evaluated through Alizarin red S staining, alkaline phosphatase (ALP) activity, and specific marker expression.
miR-186 downregulation was observed during OD. rBMSCs with miR-186 overexpression were generated via transfection. Compared with vehicle negative controls, miR-186 upregulation significantly repressed rBMSCs' OD, as evidenced by a reduced ALP activity and decreased mRNA levels of osteogenic markers [osteocalcin, Runx2, BSP, and ALP]. Furthermore, bioinformatic prediction and dual-luciferase reporter assay demonstrated that miR-186 targeted SIRT6 3′-UTR for silencing. SIRT6 overexpression reversed the inhibitory effect of miR-186 on the OD of rBMSCs. Additionally, further examination showed that the activation of nuclear factor-kappa B (NFκB) pathway was involved in the miR-186/SIRT6 signal axis, and phorbol 12-myristate 13-acetate, a NFκB activator, also inhibited the OD of rBMSCs.
The present study results may demonstrate a novel mechanism of rBMSCs OD via miR-186–SIRT6 interaction. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2020.117660 |