Marangoni Effect-Driven Transfer and Compression at Three-Phase Interfaces for Highly Reproducible Nanoparticle Monolayers
Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate h...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-05, Vol.11 (9), p.3573-3581 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate highly reproducible nanoparticle monolayers. Nanoparticles could be easily transferred and compressed from the lower O/W interface to the upper O/W interface due to the interfacial tension gradient. The O/W/O system can be constructed using different kinds of organic solvents. Through this approach, good uniformity and reproducibility of the nanoparticle monolayers could be guaranteed even using a wide range of nanoparticle concentrations. Furthermore, this strategy is generally applicable to various nanoparticles with different sizes, shapes, components, and surface ligands, which offers a facile and general approach to functional nanodevices. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c01116 |