Marangoni Effect-Driven Transfer and Compression at Three-Phase Interfaces for Highly Reproducible Nanoparticle Monolayers

Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-05, Vol.11 (9), p.3573-3581
Hauptverfasser: Lin, Xiang, Fang, Guoqiang, Liu, Yuanlan, He, Yangyang, Wang, Li, Dong, Bin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate highly reproducible nanoparticle monolayers. Nanoparticles could be easily transferred and compressed from the lower O/W interface to the upper O/W interface due to the interfacial tension gradient. The O/W/O system can be constructed using different kinds of organic solvents. Through this approach, good uniformity and reproducibility of the nanoparticle monolayers could be guaranteed even using a wide range of nanoparticle concentrations. Furthermore, this strategy is generally applicable to various nanoparticles with different sizes, shapes, components, and surface ligands, which offers a facile and general approach to functional nanodevices.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c01116