Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice

Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2020-06, Vol.34 (6), p.8068-8081
Hauptverfasser: Ahn, Jisong, Ha, Tae Youl, Ahn, Jiyun, Jung, Chang Hwa, Seo, Hyo Deok, Kim, Min Jung, Kim, Young‐Soo, Jang, Young Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscle mass. C57BL/6 mice were fed a 0.25% U pinnatifida extract‐containing diet for 8 weeks. U pinnatifida extract‐fed mice showed increased running distance, total running time, and extensor digitorum longus and gastrocnemius muscle weights. U pinnatifida extract supplementation upregulated the expression of myocyte enhancer factor 2C, oxidative muscle fiber markers such as myosin heavy chain 1 (MHC1), and oxidative biomarkers in the gastrocnemius muscles. Compared to the controls, U pinnatifida extract‐fed mice showed larger mitochondria and increased gene and protein expression of molecules involved in mitochondrial biogenesis and oxidative phosphorylation, including nuclear respiratory factor 2 and mitochondrial transcription factor A. U pinnatifida extract supplementation also increased the mRNA expression of angiogenesis markers, including VEGFa, VEGFb, FGF1, angiopoietin 1, and angiopoietin 2, in the gastrocnemius muscles. Importantly, U pinnatifida extracts upregulated the estrogen‐related receptor γ and peroxisome proliferator‐activated receptor gamma co‐activator 1‐alpha (PGC‐1α)/AMP‐activated protein kinase (AMPK)/sirtuin 1 (SIRT1) networks, which are partially increased by fucoxanthin, hesperetin, and caffeic acid treatments. Collectively, U pinnatifida extracts enhance mitochondrial biogenesis, increase oxidative muscle fiber, and promote angiogenesis in skeletal muscles, resulting in improved exercise capacity and skeletal muscle mass. These effects are attributable to fucoxanthin, hesperetin, and caffeic acid, bioactive components of U pinnatifida extracts.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.201902399RR