Nature (Hole or Electron) of Charge-Transfer Ability of Substituted Cyclopyrenylene Hoop-Shaped Compounds
We theoretically investigate here by means of DFT methods how the selective substitution in cyclic organic nanorings composed of pyrene units may promote semiconducting properties, analyzing the energy needed for a hole- or electron-transfer accommodation as a function of the substitution pattern an...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-05, Vol.124 (18), p.3555-3563 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We theoretically investigate here by means of DFT methods how the selective substitution in cyclic organic nanorings composed of pyrene units may promote semiconducting properties, analyzing the energy needed for a hole- or electron-transfer accommodation as a function of the substitution pattern and the system size (i.e., number of pyrene units). We choose to study both [3]Cyclo-2,7-pyrenylene ([3]CPY) and [4]Cyclo-2,7-pyrenylene ([4]CPY) compounds, the latter already synthesized, with substituents other than hydrogen acting in ipso and ortho positions, as well as the effect of the per-substitution. As substituents, we selected a set of electroactive halogen atoms (F, Cl, and Br) and groups (CN) to disclose structure–property relationships allowing thus to anticipate the use of these systems as organic molecular semiconductors. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.9b09869 |