Ultrasound echogenicity is associated with fatigue-induced failure in a cadaveric Achilles tendon model
Achilles tendon disorders are among the most difficult sports-related injuries to predict with current diagnostic tools. The purpose of this study was to identify a clinically useful marker for early tendon damage. We hypothesized that alterations in mean echogenicity are linked with changes in vitr...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2020-05, Vol.105, p.109784-109784, Article 109784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achilles tendon disorders are among the most difficult sports-related injuries to predict with current diagnostic tools. The purpose of this study was to identify a clinically useful marker for early tendon damage. We hypothesized that alterations in mean echogenicity are linked with changes in vitro tendon mechanics. To test our hypothesis, we harvested Achilles tendons from 10 fresh-frozen cadaveric feet and cyclically fatigued them using a universal test frame while we continuously acquired ultrasound images. Throughout this fatigue protocol, we applied 2 stress tests every 500 loading cycles to quantify changes in ultrasound imaging echogenicity. We continued this fatigue protocol until each tendon either failed completely or survived 150,000 cycles. Tendons that failed during the fatigue loading (6/10) underwent greater changes in mean echogenicity compared to tendons that did not fail (P = 0.031). These tendons that failed during fatigue loading demonstrated greater changes in mean echogenicity that surpassed 1.0%; whereas survivor tendons exhibited less than 0.5% changes in mean echogenicity. We found that changes in mean echogenicity measured with ultrasound increased proportionally with increased tendon damage. The magnitude of these changes was relatively small ( |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2020.109784 |