High-Resolution Mapping of the Urban Built Environment Stocks in Beijing

Improving our comprehension of the weight and spatial distribution of urban built environment stocks is essential for informing urban resource, waste, and environmental management, but this is often hampered by inaccuracy and inconsistency of the typology and material composition data of buildings a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-05, Vol.54 (9), p.5345-5355
Hauptverfasser: Mao, Ruichang, Bao, Yi, Huang, Zhou, Liu, Qiance, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving our comprehension of the weight and spatial distribution of urban built environment stocks is essential for informing urban resource, waste, and environmental management, but this is often hampered by inaccuracy and inconsistency of the typology and material composition data of buildings and infrastructure. Here, we have integrated big data mining and analytics techniques and compiled a local material composition database to address these gaps, for a detailed characterization of the quantity, quality, and spatial distribution (in 500 m × 500 m grids) of the urban built environment stocks in Beijing in 2018. We found that 3621 megatons (140 ton/cap) of construction materials were accumulated in Beijing’s buildings and infrastructure, equaling to 1141 Mt of embodied greenhouse gas emissions. Buildings contribute the most (63% of total, roughly half in residential and half in nonresidential) to the total stock and the subsurface stocks account for almost half. Spatially, the belts between 3 and 7 km from city center (approximately 5 t/m2) and commercial grids (approximately 8 t/m2) became the densest. Correlation analyses between material stocks and socioeconomic factors at a high resolution reveal an inverse relationship between building and road stock densities and suggest that Beijing is sacrificing skylines for space in urban expansion. Our results demonstrate that harnessing emerging big data and analytics (e.g., point of interest data and web crawling) could help realize more spatially refined characterization of built environment stocks and highlight the role of such information and urban planning in urban resource, waste, and environmental strategies.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.9b07229