Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with MeCP2 non-sense mutations

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular basis of disease 2020-07, Vol.1866 (7), p.165793-165793, Article 165793
Hauptverfasser: Sbardella, Diego, Tundo, Grazia Raffaella, Cunsolo, Vincenzo, Grasso, Giuseppe, Cascella, Raffaella, Caputo, Valerio, Santoro, Anna Maria, Milardi, Danilo, Pecorelli, Alessandra, Ciaccio, Chiara, Di Pierro, Donato, Leoncini, Silvia, Campagnolo, Luisa, Pironi, Virginia, Oddone, Francesco, Manni, Priscilla, Foti, Salvatore, Giardina, Emiliano, De Felice, Claudio, Hayek, Joussef, Curatolo, Paolo, Galasso, Cinzia, Valacchi, Giuseppe, Coletta, Massimiliano, Graziani, Grazia, Marini, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis. [Display omitted]
ISSN:0925-4439
1879-260X
DOI:10.1016/j.bbadis.2020.165793