Carotenogenesis and chromoplast development during ripening of yellow, orange and red colored Physalis fruit

Main conclusion Formation of specific ultrastructural chromoplastidal elements during ripening of fruits of three different colored Physalis spp. is closely related to their distinct carotenoid profiles. The accumulation of color-determining carotenoids within the chromoplasts of ripening yellow, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2020-04, Vol.251 (5), p.95-95
Hauptverfasser: Wen, Xin, Heller, Annerose, Wang, Kunli, Han, Qianyun, Ni, Yuanying, Carle, Reinhold, Schweiggert, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Main conclusion Formation of specific ultrastructural chromoplastidal elements during ripening of fruits of three different colored Physalis spp. is closely related to their distinct carotenoid profiles. The accumulation of color-determining carotenoids within the chromoplasts of ripening yellow, orange, and red fruit of Physalis pubescens  L., Physalis peruviana  L., and Physalis alkekengi  L., respectively, was monitored by high-performance liquid chromatography/diode array detector/tandem mass spectrometry (HPLC–DAD-MS/MS) as well as light and transmission electron microscopy. Both yellow and orange fruit gradually accumulated mainly β-carotene and lutein esters at variable levels, explaining their different colors at full ripeness. Upon commencing β-carotene biosynthesis, large crystals appeared in their chromoplasts, while large filaments protruding from plastoglobules were characteristic elements of chromoplasts of orange fruit. In contrast to yellow and orange fruit, fully ripe red fruit contained almost no β-carotene, but esters of both β-cryptoxanthin and zeaxanthin at very high levels. Tubule bundles and unusual disc-like crystallites were predominant carotenoid-bearing elements in red fruit. Our study supports the earlier hypothesis that the predominant carotenoid type might shape the ultrastructural carotenoid deposition form, which is considered important for color, stability and bioavailability of the contained carotenoids.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-020-03383-5