CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation

CeCu solid solution oxide catalysts were prepared by the complex method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). And its activity in the catalytic wet peroxide oxidation (CWPO) of 4-chl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020, Vol.27 (1), p.846-860
Hauptverfasser: Xie, Hongmei, Zeng, Jia, Zhou, Guilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CeCu solid solution oxide catalysts were prepared by the complex method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). And its activity in the catalytic wet peroxide oxidation (CWPO) of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) in water was investigated. The results showed that the Cu 2+ ions dissolved into the CeO 2 lattice to form CeCu solid solution oxide with a coarse, interconnected, porous, and cotton-like morphology. The metal-oxygen bonds were weakened by the formation of solid solution in the CeCu oxide catalyst. This weakening facilitated the activation and decomposition of the H 2 O 2 to form highly oxidative HO· species that can lead to significant chlorophenol mineralization. The formation of CeCu solid solution oxide can effectively inhibit the Cu ions to be leached from the used CeCu oxide catalysts, which can ensure the CeCu oxide catalysts to adapt to a wide pH range of 2.1–7.9 and exhibit good reusability. CWPO reaction of 4-CP and 2,4-DCP molecules on CeCu oxide catalysts conforms to the first-order kinetic equation: y  = 6959.3 x  − 17.2 and y  = 9725 x  − 25.4, respectively. And the reaction activation energies are 57.8 and 80.8 kJ/mol, respectively. The TOC removals of 4-CP and 2,4-DCP can exceed 88 and 82%, and the dechlorination rates of 4-CP and 2,4-DCP are higher than 95 and 99.5%, respectively.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-07042-5