A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo
Because of poor self-repair capacity, the repair of cartilage defect is always a great challenge in clinical treatment. In vitro cartilage regeneration provides a potential strategy for functional reconstruction of cartilage defect. Hydrogel has been known as an ideal cartilage regeneration scaffold...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2020-05, Vol.108, p.87-96 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of poor self-repair capacity, the repair of cartilage defect is always a great challenge in clinical treatment. In vitro cartilage regeneration provides a potential strategy for functional reconstruction of cartilage defect. Hydrogel has been known as an ideal cartilage regeneration scaffold. However, to date, in vitro cartilage regeneration based on hydrogel has not achieved satisfactory results. The current study explored the feasibility of in vitro 3D cartilage regeneration based on a moldable thermosensitive hydroxypropyl chitin (HPCH) hydrogel and its in vivo fate. The thermosensitive HPCH hydrogel was prepared and characterized. Goat auricular chondrocytes were encapsulated into the HPCH hydrogel to form a chondrocyte-hydrogel construct. The constructs were injected subcutaneously into nude mice or molded into different shapes for in vitro chondrogenic culture followed by in vivo implantation. The results demonstrated that the HPCH hydrogel possessed satisfactory gelation properties (gelation time |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2020.03.039 |