A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo

Because of poor self-repair capacity, the repair of cartilage defect is always a great challenge in clinical treatment. In vitro cartilage regeneration provides a potential strategy for functional reconstruction of cartilage defect. Hydrogel has been known as an ideal cartilage regeneration scaffold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2020-05, Vol.108, p.87-96
Hauptverfasser: Xu, Yawen, Xu, Yong, Bi, Bo, Hou, Mengjie, Yao, Lin, Du, Qiran, He, Aijuan, Liu, Yu, Miao, Chunlei, Liang, Xiaoqin, Jiang, Xulin, Zhou, Guangdong, Cao, Yilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of poor self-repair capacity, the repair of cartilage defect is always a great challenge in clinical treatment. In vitro cartilage regeneration provides a potential strategy for functional reconstruction of cartilage defect. Hydrogel has been known as an ideal cartilage regeneration scaffold. However, to date, in vitro cartilage regeneration based on hydrogel has not achieved satisfactory results. The current study explored the feasibility of in vitro 3D cartilage regeneration based on a moldable thermosensitive hydroxypropyl chitin (HPCH) hydrogel and its in vivo fate. The thermosensitive HPCH hydrogel was prepared and characterized. Goat auricular chondrocytes were encapsulated into the HPCH hydrogel to form a chondrocyte-hydrogel construct. The constructs were injected subcutaneously into nude mice or molded into different shapes for in vitro chondrogenic culture followed by in vivo implantation. The results demonstrated that the HPCH hydrogel possessed satisfactory gelation properties (gelation time
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2020.03.039