In vivo assessment of grafted cortical neural progenitor cells and host response to functionalized self-assembling peptide hydrogels and the implications for tissue repair

Tissue specific scaffolds formed from minimalist N-fluorenylmethyloxycarbonyl self-assembling peptides (Fmoc-SAPs) have emerged as promising biomaterials due to their ease of synthesis and capacity to self-assemble via simple, non-covalent interactions into complex nanofibrous hydrogels. However, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2014-11, Vol.2 (44), p.7771-7778
Hauptverfasser: Rodriguez, A L, Wang, T Y, Bruggeman, K F, Horgan, C C, Li, R, Williams, R J, Parish, C L, Nisbet, D R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tissue specific scaffolds formed from minimalist N-fluorenylmethyloxycarbonyl self-assembling peptides (Fmoc-SAPs) have emerged as promising biomaterials due to their ease of synthesis and capacity to self-assemble via simple, non-covalent interactions into complex nanofibrous hydrogels. However, concerns remain over their biocompatibility and cytotoxicity for in vivo applications. Here, we demonstrate that these Fmoc-SAPs are biocompatible in vivo and well suited as a delivery vehicle for cell transplantation. In order to determine the effect of tissue specific parameters, we designed three Fmoc-SAPs containing varying bioactive peptide sequences derived from extracellular matrix proteins, laminin and fibronectin. Fmoc-SAPs delivering cortical neural progenitor cells into the mouse brain display a limited foreign body response, effective functionalization and low cytotoxicity for at least 28 days. These results highlight the suitability of Fmoc-SAPs for improved neural tissue repair through the support of grafted cells and adjacent host parenchyma. Overall, we illustrate that Fmoc-SAPs are easily engineered materials for use as a tool in cell transplantation, where biocompatibility is key to promoting cell survival, enhancing the graft-host interface and attenuation of the inflammatory response for improved tissue repair outcomes.
ISSN:2050-750X
2050-7518
DOI:10.1039/c4tb01391c