The photothermal effect of silica-carbon hollow sphere-concanavalin A on liver cancer cells

Hepatocellular carcinoma (HCC) is one of the most common cancers and causes of death by cancer. Concanavalin A (ConA) lectin can specifically bind to the glycoprotein receptors of HCC, which are produced by the aberrant overexpression of liver cancer cells. ConA was used in the current study to conj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2015-03, Vol.3 (12), p.2447-2454
Hauptverfasser: Chen, Ying-Chi, Chiu, Wen-Tai, Chen, Jung-Chih, Chang, Chia-Sheng, Hui-Ching Wang, Lily, Lin, Hong-Ping, Chang, Hsien-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatocellular carcinoma (HCC) is one of the most common cancers and causes of death by cancer. Concanavalin A (ConA) lectin can specifically bind to the glycoprotein receptors of HCC, which are produced by the aberrant overexpression of liver cancer cells. ConA was used in the current study to conjugate on silica-carbon hollow spheres (SCHSs) and applied in the thermal ablation therapy of liver cancer cell lines under near-infrared (NIR) laser irradiation. We found that the amount of ConA-SCHS complex binding to hepatoma cells was significantly higher than that seen with normal hepatocytes, based on flow cytometric analysis and confocal imaging. Hepatoma cells incubated with ConA-SCHSs were thus more easily killed by the subsequent irradiation with a NIR laser. The results show that the ConA-SCHS complex may enhance the interaction with highly expressed ConA receptors on hepatoma cells, and thus serve as an effective photothermal therapy agent for liver cancer treatment.
ISSN:2050-750X
2050-7518
DOI:10.1039/c5tb00056d