In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties

The present study describes enzymatically cross-linked gelatin-based hydrogels as in situ forming tissue adhesives. A series of gelatin derivatives with different phenolic contents were synthesized by conjugating hydroxyphenyl propionic acid and tyramine to gelatin backbones. Two gelatin derivatives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2013-05, Vol.1 (18), p.2407-2414
Hauptverfasser: Lee, Yunki, Bae, Jin Woo, Oh, Dong Hwan, Park, Kyung Min, Chun, Young Wook, Sung, Hak-Joon, Park, Ki Dong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study describes enzymatically cross-linked gelatin-based hydrogels as in situ forming tissue adhesives. A series of gelatin derivatives with different phenolic contents were synthesized by conjugating hydroxyphenyl propionic acid and tyramine to gelatin backbones. Two gelatin derivatives, gelatin-hydroxyphenyl propionic acid (GH) and gelatin-hydroxyphenyl propionic acid-tyramine (GHT) with maximum obtainable phenolic contents (146.6 μmol g GH and 395.7 μmol g GHT), were used to prepare gelatin-based hydrogels via horseradish peroxidase (HRP)-mediated reactions in the presence of hydrogen peroxide (H O ). By changing the HRP and H O concentrations, the gelation time, mechanical strength, and degradation rate of the hydrogels were fairly well controlled, indicating a tunable rate and degree of cross-linking. In addition, we found that an increase in phenolic content led to increased mechanical strength of the hydrogels. Lap-shear test results clearly showed that the GH and GHT hydrogels exhibited 2-3 times greater tissue adhesiveness compared to fibrin glues. On the basis of these results, we conclude that in situ forming gelatin-based hydrogels, which are both injectable and sprayable, can be used as an alternative to conventional tissue adhesives.
ISSN:2050-750X
2050-7518
DOI:10.1039/c3tb00578j