Solar-Heating Crassula perforata-Structured Superoleophilic CuO@CuS/PDMS Nanowire Arrays on Copper Foam for Fast Remediation of Viscous Crude Oil Spill
In nature, leaf photosynthesis is the most common solar energy conversion system, which involves light absorption and conversion processes. Most interestingly, the leaves of a green plant are almost lamellar. Herein, inspired by the structure and light conversion capacity of plants, we developed a C...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-04, Vol.12 (17), p.19476-19482 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In nature, leaf photosynthesis is the most common solar energy conversion system, which involves light absorption and conversion processes. Most interestingly, the leaves of a green plant are almost lamellar. Herein, inspired by the structure and light conversion capacity of plants, we developed a Crassula perforata-structured CuO@CuS/poly(dimethylsiloxane) (CuO@CuS/PDMS) nanowire arrays (NWAs) on copper foam (CF) with effective light-to-heat conversion to clean up viscous crude oil (∼105 mPa s) by in situ reducing the viscosity of crude oil. The C. perforata-structured CuO@CuS/PDMS core/shell NWAs were grown on copper foam with high density and uniformity, exhibiting excellent light adsorption and photothermal conversion efficiency. When simulated sunlight was irradiated on the structure of the CuO@CuS/PDMS NWAs/CF, abundant heat was generated and in situ reduced the viscosity of crude oil, which prominently increased the oil diffusion coefficient and sped up the oil sorption rate. The oil recovery procedure can realize a continuous clean up with the assistance of a pump device, and the crude oil adsorption capacity can reach up to 15.57 × 105 g/m3 during a 5 min adsorption process. The high-performance photothermal self-heated superoleophilic CuO@CuS/PDMS NWAs/CF has a promise of promoting the practical applications of the sorbents in the clean up of viscous crude oil spills. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c01207 |