A Na + conducting hydrogel for protection of organic electrochemical transistors

Organic electrochemical transistors (OECTs) are being intensively developed for applications in electronics and biological interfacing. These devices rely on ions injected in a polymer film from an aqueous liquid electrolyte for their operation. However, the development of solid or semi-solid electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2018-05, Vol.6 (18), p.2901-2906
Hauptverfasser: Del Agua, I, Porcarelli, L, Curto, V F, Sanchez-Sanchez, A, Ismailova, E, Malliaras, G G, Mecerreyes, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic electrochemical transistors (OECTs) are being intensively developed for applications in electronics and biological interfacing. These devices rely on ions injected in a polymer film from an aqueous liquid electrolyte for their operation. However, the development of solid or semi-solid electrolytes are needed for future integration of OECTs into flexible, printed or conformable bioelectronic devices. Here, we present a new polyethylene glycol hydrogel with high Na conductivity which is particularly suitable for OECTs. This novel hydrogel was synthesized using cost-effective photopolymerization of poly(ethylene glycol)-dimethacrylate and sodium acrylate. Due to the high water content (83% w/w) and the presence of free Na , the hydrogel showed high ionic conductivity values at room temperature (10 S cm ) as characterized by electrochemical impedance spectroscopy. OECTs made using this hydrogel as a source of ions showed performance that was equivalent to that of OECTs employing a liquid electrolyte. They also showed improved stability, with only a 3% drop in current after 6 h of operation. This hydrogel paves the way for the replacement of liquid electrolytes in high performance OECTs bringing about advantages in terms of device integration and protection.
ISSN:2050-750X
2050-7518
DOI:10.1039/c8tb00201k