Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato
• Fruit ripening is governed by a complex regulatory network. Reversible histone methylation and demethylation regulate chromatin structure and gene expression. However, little is known about the involvement of histone demethylases in regulating fruit ripening. • Here, we found that the tomato (Sola...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-08, Vol.227 (4), p.1138-1156 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | • Fruit ripening is governed by a complex regulatory network. Reversible histone methylation and demethylation regulate chromatin structure and gene expression. However, little is known about the involvement of histone demethylases in regulating fruit ripening.
• Here, we found that the tomato (Solanum lycopersicum) SlJMJ6 encodes a histone lysine demethylase that specifically demethylates H3K27 methylation. Overexpression of SlJMJ6 accelerates tomato fruit ripening, which is associated with the upregulated expression of a large number of ripening-related genes.
• Integrated analysis of RNA-seq and chromatin immunoprecipitation followed by sequencing identified 32 genes directly targeted by SlJMJ6 and transcriptionally upregulated with decreased H3K27m3 in SlJMJ6-overexpressed fruit. Numerous SlJMJ6-regulated genes are involved in transcription regulation, ethylene biosynthesis, cell wall degradation and hormone signaling. Eleven ripening-related genes including RIPENING INHIBITOR (RIN), 1-aminocyclopropane 1-carboxylate synthase-4 (ACS4), 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1), pectate lyase (PL) and beta-galactosidase 4 (TBG4), and a DNA demethylase DML2, were confirmed to be regulated directly by SlJMJ6 through removing H3K27me3.
• Our results demonstrate that SlJMJ6 is a ripening-prompting H3K27me3 demethylase that activates the expression of the ripening-related genes by modulating H3K27me3, thereby facilitating tomato fruit ripening. Our work also reveals a novel link between histone demethylation and DNA demethylation in regulating fruit ripening. To our knowledge, this is the first report of the involvement of a histone lysine demethylase in the regulation of fruit ripening. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.16590 |