One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery
[Display omitted] In this paper, we reported a one-step activation strategy to prepare highly graphitized N-doped porous carbon materials (KDC-FAC) derived from biomass, and adopted ferric ammonium citrate (FAC) as active agent. At high temperature, FAC was decomposed into Fe- and NH3-based material...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2020-07, Vol.572, p.216-226 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
In this paper, we reported a one-step activation strategy to prepare highly graphitized N-doped porous carbon materials (KDC-FAC) derived from biomass, and adopted ferric ammonium citrate (FAC) as active agent. At high temperature, FAC was decomposed into Fe- and NH3-based materials, further increasing graphitization degree, introducing N-containing functional groups and forming porous structure. KDC-FAC has superior electrocatalytic activity and stability towards V2+/V3+ and VO2+/VO2+ redox reactions. High graphitization degree can enhance the conductivity of carbon material, and porous structure is conducive to increase reaction area of vanadium redox couples. Moreover, N-containing functional groups are beneficial to improve the electrode wettability and serve as active sites. The single cell tests demonstrate that KDC-FAC modified cell exhibits good adaptability under high current density and superb stability in cycling test. Compared with pristine cell, the energy efficiency of KDC-FAC modified cell is increased by 9% at 150 mA cm−2. This biomass-derived carbon-based material proposed in our work is expected to be an excellent catalyst for vanadium redox flow battery. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2020.03.069 |