Left Prefrontal Connectivity Links Subthalamic Stimulation with Depressive Symptoms

Objective Subthalamic nucleus deep brain stimulation (STN‐DBS) in Parkinson's disease (PD) not only stimulates focal target structures but also affects distributed brain networks. The impact this network modulation has on non‐motor DBS effects is not well‐characterized. By focusing on the affec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2020-06, Vol.87 (6), p.962-975
Hauptverfasser: Irmen, Friederike, Horn, Andreas, Mosley, Philip, Perry, Alistair, Petry‐Schmelzer, Jan Niklas, Dafsari, Haidar S., Barbe, Michael, Visser‐Vandewalle, Veerle, Schneider, Gerd‐Helge, Li, Ningfei, Kübler, Dorothee, Wenzel, Gregor, Kühn, Andrea A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective Subthalamic nucleus deep brain stimulation (STN‐DBS) in Parkinson's disease (PD) not only stimulates focal target structures but also affects distributed brain networks. The impact this network modulation has on non‐motor DBS effects is not well‐characterized. By focusing on the affective domain, we systematically investigate the impact of electrode placement and associated structural connectivity on changes in depressive symptoms following STN‐DBS, which have been reported to improve, worsen, or remain unchanged. Methods Depressive symptoms before and after STN‐DBS surgery were documented in 116 patients with PD from 3 DBS centers (Berlin, Queensland, and Cologne). Based on individual electrode reconstructions, the volumes of tissue activated (VTAs) were estimated and combined with normative connectome data to identify structural connections passing through VTAs. Berlin and Queensland cohorts formed a training and cross‐validation dataset used to identify structural connectivity explaining change in depressive symptoms. The Cologne data served as the test‐set for which depressive symptom change was predicted. Results Structural connectivity was linked to depressive symptom change under STN‐DBS. An optimal connectivity map trained on the Berlin cohort could predict changes in depressive symptoms in Queensland patients and vice versa. Furthermore, the joint training‐set map predicted changes in depressive symptoms in the independent test‐set. Worsening of depressive symptoms was associated with left prefrontal connectivity. Interpretation Fibers connecting the electrode with left prefrontal areas were associated with worsening of depressive symptoms. Our results suggest that for the left STN‐DBS lead, placement impacting fibers to left prefrontal areas should be avoided to maximize improvement of depressive symptoms. ANN NEUROL 2020;87:962–975
ISSN:0364-5134
1531-8249
DOI:10.1002/ana.25734