Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry
Recovering the high-resolution three-dimensional (3D) surface of an object from a single frame image has been the ultimate goal long pursued in fringe projection profilometry (FPP). The color fringe projection method is one of the technologies with the most potential towards such a goal due to its t...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-04, Vol.45 (7), p.1842-1845 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recovering the high-resolution three-dimensional (3D) surface of an object from a single frame image has been the ultimate goal long pursued in fringe projection profilometry (FPP). The color fringe projection method is one of the technologies with the most potential towards such a goal due to its three-channel multiplexing properties. However, the associated color imbalance, crosstalk problems, and compromised coding strategy remain major obstacles to overcome. Inspired by recent successes of deep learning for FPP, we propose a single-shot absolute 3D shape measurement with deep-learning-based color FPP. Through "learning" on extensive data sets, the properly trained neural network can "predict" the high-resolution, motion-artifact-free, crosstalk-free absolute phase directly from one single color fringe image. Compared with the traditional approach, our method allows for more accurate phase retrieval and more robust phase unwrapping. Experimental results demonstrate that the proposed approach can provide high-accuracy single-frame absolute 3D shape measurement for complicated objects. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.388994 |