Secretome-Mediated Interactions with Intestinal Epithelial Cells: A Role for Secretome Components from Lactobacillus rhamnosus R0011 in the Attenuation of Salmonella enterica Serovar Typhimurium Secretome and TNF-α-Induced Proinflammatory Responses

Recent evidence suggests that lactic acid bacteria communicate with host cells via secretome components to influence immune responses but less is known about gut-pathogen secretomes, impact of lactic acid bacteria secretomes on host-pathogen interactions, and the mechanisms underlying these interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2020-05, Vol.204 (9), p.2523-2534
Hauptverfasser: Jeffrey, Michael P, MacPherson, Chad W, Mathieu, Olivier, Tompkins, Thomas A, Green-Johnson, Julia M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent evidence suggests that lactic acid bacteria communicate with host cells via secretome components to influence immune responses but less is known about gut-pathogen secretomes, impact of lactic acid bacteria secretomes on host-pathogen interactions, and the mechanisms underlying these interactions. Genome-wide microarrays and cytokine profiling were used to interrogate the impact of the R0011 secretome (LrS) on TNF-α and subsp. serovar Typhimurium secretome (STS)-induced outcomes in human intestinal epithelial cells. The LrS attenuated both TNF-α- and STS-induced gene expression involved in NF-κB and MAPK activation, as well as expression of genes involved in other immune-related signaling pathways. Specifically, the LrS induced the expression of dual specificity phosphatase 1 ( ), activating transcription factor 3 ( ), and tribbles pseudokinase 3 ( ), negative regulators of innate immune signaling, in HT-29 intestinal epithelial cells challenged with TNF-α or STS. TNF-α- and STS-induced acetylation of H3 and H4 histones was attenuated by the LrS, as was the production of TNF-α- and STS-induced proinflammatory cytokines and chemokines. Interestingly, the LrS induced production of macrophage migration inhibitory factor (MIF), a cytokine involved in host-microbe interactions at the gut interface. We propose that the LrS attenuates proinflammatory mediator expression through increased transcription of negative regulators of innate immune activity and changes in global H3 and H4 histone acetylation. To our knowledge, these findings provide novel insights into the complex multifaceted mechanisms of action behind secretome-mediated interdomain communication at the gut-mucosal interface.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1901440