Optimized multiple testing procedures for nested sub-populations based on a continuous biomarker
An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2020-10, Vol.29 (10), p.2945-2957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients can be classified into biomarker low and biomarker high subgroups, which are defined via a threshold on the continuous biomarker. However, if insufficient information on the biomarker is available, the a priori choice of the threshold can be challenging and it has been proposed to consider several thresholds and to apply appropriate multiple testing procedures to test for a treatment effect in the corresponding subgroups controlling the family-wise type 1 error rate. In this manuscript we propose a framework to select optimal thresholds and corresponding optimized multiple testing procedures that maximize the expected power to identify at least one subgroup with a positive treatment effect. Optimization is performed over a prior on a family of models, modelling the relation of the biomarker with the expected outcome under treatment and under control. We find that for the considered scenarios 3 to 4 thresholds give the optimal power. If there is a prior belief on a small subgroup where the treatment has a positive effect, additional optimization of the spacing of thresholds may result in a large benefit. The procedure is illustrated with a clinical trial example in depression. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280220913071 |