Optimized multiple testing procedures for nested sub-populations based on a continuous biomarker

An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2020-10, Vol.29 (10), p.2945-2957
Hauptverfasser: Graf, Alexandra Christine, Magirr, Dominic, Dmitrienko, Alex, Posch, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients can be classified into biomarker low and biomarker high subgroups, which are defined via a threshold on the continuous biomarker. However, if insufficient information on the biomarker is available, the a priori choice of the threshold can be challenging and it has been proposed to consider several thresholds and to apply appropriate multiple testing procedures to test for a treatment effect in the corresponding subgroups controlling the family-wise type 1 error rate. In this manuscript we propose a framework to select optimal thresholds and corresponding optimized multiple testing procedures that maximize the expected power to identify at least one subgroup with a positive treatment effect. Optimization is performed over a prior on a family of models, modelling the relation of the biomarker with the expected outcome under treatment and under control. We find that for the considered scenarios 3 to 4 thresholds give the optimal power. If there is a prior belief on a small subgroup where the treatment has a positive effect, additional optimization of the spacing of thresholds may result in a large benefit. The procedure is illustrated with a clinical trial example in depression.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280220913071