Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes

Quantum emitters in hexagonal boron nitride (hBN) have attracted significant interest due to their bright and narrowband photon emission even at room temperature. The wide-bandgap two-dimensional material incorporates crystal defects of yet-unknown configuration, introducing discrete energy levels w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-03, Vol.28 (5), p.7475-7487
Hauptverfasser: Boll, Mads K, Radko, Ilya P, Huck, Alexander, Andersen, Ulrik L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum emitters in hexagonal boron nitride (hBN) have attracted significant interest due to their bright and narrowband photon emission even at room temperature. The wide-bandgap two-dimensional material incorporates crystal defects of yet-unknown configuration, introducing discrete energy levels with radiative transition frequencies in the visible spectral range. The commonly observed high brightness together with the moderate fluorescence lifetime indicates a high quantum efficiency, but the exact dynamics and the underlying energy level structure remain elusive. In this study we present a systematic and detailed analysis of the photon statistics recorded for several individual emitters. We extract the individual decay rates by modeling the second-order correlation functions using a set of rate equations based on an energy level scheme involving long-lived states. Our analysis clearly indicates excitation-power-dependent non-radiative couplings to at least two metastable levels and confirms a near unity quantum efficiency.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.386629