Three-dimensional-printed Fabry-Perot interferometer on an optical fiber tip for a gas pressure sensor

We demonstrate a three-dimensional (3D)-printed miniature optical fiber-based polymer Fabry-Perot (FP) interferometric pressure sensor based on direct femtosecond laser writing through two-photon polymerization. An unsealed cylinder column with a suspended polymer diaphragm is directly printed on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2020-03, Vol.59 (7), p.2173-2178
Hauptverfasser: Wei, Heming, Chen, Maoqing, Krishnaswamy, Sridhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a three-dimensional (3D)-printed miniature optical fiber-based polymer Fabry-Perot (FP) interferometric pressure sensor based on direct femtosecond laser writing through two-photon polymerization. An unsealed cylinder column with a suspended polymer diaphragm is directly printed on a single-mode fiber tip to form an FP cavity. Here, two FP cavities with different lengths and the same diaphragm thickness (5 µm) are presented. The fabricated FP interferometer has a fringe contrast larger than 15 dB. The experimental results show that the fabricated device with a 140 µm cavity length has a linear response to the change of pressure with a sensitivity of 3.959 nm/MPa in a range of 0-1100 kPa, and the device with a 90 µm cavity length has a linear pressure sensitivity of 4.097 nm/MPa. The temperature sensitivity is measured to be about 160.2 pm/°C and 156.8 pm/°C, respectively, within the range from 20 to 70°C. The results demonstrate that 3D-printing techniques can be used for directly fabricating FP cavities on optical fiber tips for sensing applications.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.385573