Imidazo[1,2‑a]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells

Glioblastoma multiforme (GBM) is the deadliest form of brain tumor. It is known for its ability to escape the therapeutic options available to date thanks to the presence of a subset of cells endowed with stem-like properties and ability to resist to cytotoxic treatments. As the cytosolic enzyme ald...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2020-05, Vol.63 (9), p.4603-4616
Hauptverfasser: Quattrini, Luca, Gelardi, Edoardo Luigi Maria, Coviello, Vito, Sartini, Stefania, Ferraris, Davide Maria, Mori, Mattia, Nakano, Ichiro, Garavaglia, Silvia, La Motta, Concettina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma multiforme (GBM) is the deadliest form of brain tumor. It is known for its ability to escape the therapeutic options available to date thanks to the presence of a subset of cells endowed with stem-like properties and ability to resist to cytotoxic treatments. As the cytosolic enzyme aldehyde dehydrogenase 1A3 turns out to be overexpressed in these kinds of cells, playing a key role for their vitality, treatments targeting this enzyme may represent a successful strategy to fight GBM. In this work, we describe a novel class of imidazo­[1,2-a]­pyridine derivatives as aldehyde dehydrogenase 1A3 inhibitors, reporting the evidence of their significance as novel drug candidates for the treatment of GBM. Besides showing an interesting functional profile, in terms of activity against the target enzyme and selectivity toward highly homologous isoenzymes, representative examples of the series also showed a nanomolar to picomolar efficacy against patient-derived GBM stem-like cells, thus proving the concept that targeting aldehyde dehydrogenase might represent a novel and promising way to combat GBM by striking its ability to divide immortally.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.9b01910