Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO2‑Saturated Electrolyte for Paired Electrolysis
A highly efficient CO2 electrolysis system could be created by introducing biomass oxidation as an alternative anodic reaction to the sluggish oxygen evolution reaction in a CO2-saturated and near-neutral electrolyte. Here, we successfully demonstrate anodic biomass oxidation by synthesizing 5 nm ni...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-04, Vol.11 (8), p.2941-2948 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A highly efficient CO2 electrolysis system could be created by introducing biomass oxidation as an alternative anodic reaction to the sluggish oxygen evolution reaction in a CO2-saturated and near-neutral electrolyte. Here, we successfully demonstrate anodic biomass oxidation by synthesizing 5 nm nickel oxide nanoparticles (NiO NPs). NiO NPs show a unique electrocatalytic activity for 5-hydroxymethylfurfural (HMF) oxidation under near-neutral conditions, exhibiting an anodic current onset (1 mA cm–2) at 1.524 V versus the reversible hydrogen electrode and a total Faradaic efficiency of ≤70%. Electrokinetic and in situ ultraviolet–visible spectroscopic analyses suggest that a redox active nickel hydroxide species is formed on the surface of NiO electrocatalysts during HMF oxidation, and this oxidation of Ni(II) hydroxide to Ni(III) oxyhydroxide could be the rate-determining step. This mechanistic study of biomass oxidation in a CO2-saturated electrolyte provides insight into constructing a highly efficient system for the paired electrolysis of CO2 reduction and biomass oxidation. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.0c00425 |