Self-magnetically insulated ion diode

Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1981-01, Vol.52 (1), p.4-12
Hauptverfasser: VanDevender, J.P., Quintenz, J.P., Leeper, R.J., Johnson, D.J., Crow, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 4
container_title J. Appl. Phys.; (United States)
container_volume 52
creator VanDevender, J.P.
Quintenz, J.P.
Leeper, R.J.
Johnson, D.J.
Crow, J.T.
description Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ0=0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z0. The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 1013 W.
doi_str_mv 10.1063/1.328434
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_23845955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23845955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-37f974357a6f9ad9f5bc393139eaed8a4a30ea0fbcd74d345cca45342dfcd8473</originalsourceid><addsrcrecordid>eNot0E1LAzEUheEgCtYq-BOKoLiZmsxNJslSil9QcKGuQ5rcaCSd1Elm0X9vZVydzcNZvIRcMrpktIM7toRWceBHZMao0o0Ugh6TGaUta5SW-pSclfJNKWMK9Ixcv2EKzdZ-9lijsyntF7EvY7IV_SLmfuFj9nhOToJNBS_-d04-Hh_eV8_N-vXpZXW_bhxwXRuQQUsOQtouaOt1EBsHGhhotOiV5RYoWho2zkvugQvnLBfAWx-cV1zCnFxNv7nUaIqLFd2Xy32PrppOQddxdkA3E9oN-WfEUs02Focp2R7zWEwLigstxAHeTtANuZQBg9kNcWuHvWHU_MUyzEyx4Bf5eVpm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23845955</pqid></control><display><type>article</type><title>Self-magnetically insulated ion diode</title><source>AIP Digital Archive</source><creator>VanDevender, J.P. ; Quintenz, J.P. ; Leeper, R.J. ; Johnson, D.J. ; Crow, J.T.</creator><creatorcontrib>VanDevender, J.P. ; Quintenz, J.P. ; Leeper, R.J. ; Johnson, D.J. ; Crow, J.T. ; Sandia National Laboratories, Albuquerque, New Mexico 87185</creatorcontrib><description>Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ0=0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z0. The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 1013 W.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.328434</identifier><language>eng</language><publisher>United States</publisher><subject>BEAMS ; CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPARATIVE EVALUATIONS ; CONFINEMENT ; CURRENT DENSITY ; DATA ; DIODE TUBES ; ELECTRON TUBES ; FUSION REACTIONS ; INERTIAL CONFINEMENT ; INFORMATION ; ION BEAMS ; IONS ; MAGNETIC INSULATION ; MATHEMATICAL MODELS ; NUCLEAR REACTIONS ; NUMERICAL DATA ; PLASMA CONFINEMENT 640301 -- Atomic, Molecular &amp; Chemical Physics-- Beams &amp; their Reactions ; SCALING LAWS ; SIMULATION ; THEORETICAL DATA</subject><ispartof>J. Appl. Phys.; (United States), 1981-01, Vol.52 (1), p.4-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-37f974357a6f9ad9f5bc393139eaed8a4a30ea0fbcd74d345cca45342dfcd8473</citedby><cites>FETCH-LOGICAL-c349t-37f974357a6f9ad9f5bc393139eaed8a4a30ea0fbcd74d345cca45342dfcd8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6836641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>VanDevender, J.P.</creatorcontrib><creatorcontrib>Quintenz, J.P.</creatorcontrib><creatorcontrib>Leeper, R.J.</creatorcontrib><creatorcontrib>Johnson, D.J.</creatorcontrib><creatorcontrib>Crow, J.T.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Albuquerque, New Mexico 87185</creatorcontrib><title>Self-magnetically insulated ion diode</title><title>J. Appl. Phys.; (United States)</title><description>Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ0=0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z0. The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 1013 W.</description><subject>BEAMS</subject><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>CONFINEMENT</subject><subject>CURRENT DENSITY</subject><subject>DATA</subject><subject>DIODE TUBES</subject><subject>ELECTRON TUBES</subject><subject>FUSION REACTIONS</subject><subject>INERTIAL CONFINEMENT</subject><subject>INFORMATION</subject><subject>ION BEAMS</subject><subject>IONS</subject><subject>MAGNETIC INSULATION</subject><subject>MATHEMATICAL MODELS</subject><subject>NUCLEAR REACTIONS</subject><subject>NUMERICAL DATA</subject><subject>PLASMA CONFINEMENT 640301 -- Atomic, Molecular &amp; Chemical Physics-- Beams &amp; their Reactions</subject><subject>SCALING LAWS</subject><subject>SIMULATION</subject><subject>THEORETICAL DATA</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNot0E1LAzEUheEgCtYq-BOKoLiZmsxNJslSil9QcKGuQ5rcaCSd1Elm0X9vZVydzcNZvIRcMrpktIM7toRWceBHZMao0o0Ugh6TGaUta5SW-pSclfJNKWMK9Ixcv2EKzdZ-9lijsyntF7EvY7IV_SLmfuFj9nhOToJNBS_-d04-Hh_eV8_N-vXpZXW_bhxwXRuQQUsOQtouaOt1EBsHGhhotOiV5RYoWho2zkvugQvnLBfAWx-cV1zCnFxNv7nUaIqLFd2Xy32PrppOQddxdkA3E9oN-WfEUs02Focp2R7zWEwLigstxAHeTtANuZQBg9kNcWuHvWHU_MUyzEyx4Bf5eVpm</recordid><startdate>19810101</startdate><enddate>19810101</enddate><creator>VanDevender, J.P.</creator><creator>Quintenz, J.P.</creator><creator>Leeper, R.J.</creator><creator>Johnson, D.J.</creator><creator>Crow, J.T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19810101</creationdate><title>Self-magnetically insulated ion diode</title><author>VanDevender, J.P. ; Quintenz, J.P. ; Leeper, R.J. ; Johnson, D.J. ; Crow, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-37f974357a6f9ad9f5bc393139eaed8a4a30ea0fbcd74d345cca45342dfcd8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>BEAMS</topic><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>CONFINEMENT</topic><topic>CURRENT DENSITY</topic><topic>DATA</topic><topic>DIODE TUBES</topic><topic>ELECTRON TUBES</topic><topic>FUSION REACTIONS</topic><topic>INERTIAL CONFINEMENT</topic><topic>INFORMATION</topic><topic>ION BEAMS</topic><topic>IONS</topic><topic>MAGNETIC INSULATION</topic><topic>MATHEMATICAL MODELS</topic><topic>NUCLEAR REACTIONS</topic><topic>NUMERICAL DATA</topic><topic>PLASMA CONFINEMENT 640301 -- Atomic, Molecular &amp; Chemical Physics-- Beams &amp; their Reactions</topic><topic>SCALING LAWS</topic><topic>SIMULATION</topic><topic>THEORETICAL DATA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VanDevender, J.P.</creatorcontrib><creatorcontrib>Quintenz, J.P.</creatorcontrib><creatorcontrib>Leeper, R.J.</creatorcontrib><creatorcontrib>Johnson, D.J.</creatorcontrib><creatorcontrib>Crow, J.T.</creatorcontrib><creatorcontrib>Sandia National Laboratories, Albuquerque, New Mexico 87185</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VanDevender, J.P.</au><au>Quintenz, J.P.</au><au>Leeper, R.J.</au><au>Johnson, D.J.</au><au>Crow, J.T.</au><aucorp>Sandia National Laboratories, Albuquerque, New Mexico 87185</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-magnetically insulated ion diode</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1981-01-01</date><risdate>1981</risdate><volume>52</volume><issue>1</issue><spage>4</spage><epage>12</epage><pages>4-12</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ0=0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z0. The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 1013 W.</abstract><cop>United States</cop><doi>10.1063/1.328434</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1981-01, Vol.52 (1), p.4-12
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_23845955
source AIP Digital Archive
subjects BEAMS
CHARGED PARTICLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
CONFINEMENT
CURRENT DENSITY
DATA
DIODE TUBES
ELECTRON TUBES
FUSION REACTIONS
INERTIAL CONFINEMENT
INFORMATION
ION BEAMS
IONS
MAGNETIC INSULATION
MATHEMATICAL MODELS
NUCLEAR REACTIONS
NUMERICAL DATA
PLASMA CONFINEMENT 640301 -- Atomic, Molecular & Chemical Physics-- Beams & their Reactions
SCALING LAWS
SIMULATION
THEORETICAL DATA
title Self-magnetically insulated ion diode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-magnetically%20insulated%20ion%20diode&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=VanDevender,%20J.P.&rft.aucorp=Sandia%20National%20Laboratories,%20Albuquerque,%20New%20Mexico%2087185&rft.date=1981-01-01&rft.volume=52&rft.issue=1&rft.spage=4&rft.epage=12&rft.pages=4-12&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.328434&rft_dat=%3Cproquest_osti_%3E23845955%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23845955&rft_id=info:pmid/&rfr_iscdi=true