Self-magnetically insulated ion diode
Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with...
Gespeichert in:
Veröffentlicht in: | J. Appl. Phys.; (United States) 1981-01, Vol.52 (1), p.4-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light ion diodes for producing 1–100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ0=0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z0. The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 1013 W. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.328434 |