Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking
Fabrication of crystalline covalent triazine frameworks (CTFs) under mild conditions without introduction of carbonization is a long-term challenging subject. Herein, a tandem transformation strategy was demonstrated for the preparation of highly crystalline CTFs with high surface areas under mild a...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-04, Vol.142 (15), p.6856-6860 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fabrication of crystalline covalent triazine frameworks (CTFs) under mild conditions without introduction of carbonization is a long-term challenging subject. Herein, a tandem transformation strategy was demonstrated for the preparation of highly crystalline CTFs with high surface areas under mild and metal- and solvent-free conditions. CTF-1 with a staggered AB stacking order (orange powder) obtained in the presence of a catalytic amount of superacid at 250 °C was transformed to highly crystalline CTF-1 with an eclipsed AA stacking order (greenish powder) and surface area of 646 m2 g–1 through annealing at 350 °C under nitrogen. The strategy can be extended to the production of crystalline fluorinated CTFs with controllable fluorine content. This finding unlocks opportunities to design crystalline CTFs with tunable photoelectric properties. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c00365 |