Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights
Neuromorphic computing architectures enable the dense colocation of memory and processing elements within a single circuit. This colocation removes the communication bottleneck of transferring data between separate memory and computing units as in standard von Neuman architectures for data-critical...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-04, Vol.12 (15), p.17725-17732 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuromorphic computing architectures enable the dense colocation of memory and processing elements within a single circuit. This colocation removes the communication bottleneck of transferring data between separate memory and computing units as in standard von Neuman architectures for data-critical applications including machine learning. The essential building blocks of neuromorphic systems are nonvolatile synaptic elements such as memristors. Key memristor properties include a suitable nonvolatile resistance range, continuous linear resistance modulation, and symmetric switching. In this work, we demonstrate voltage-controlled, symmetric and analog potentiation and depression of a ferroelectric Hf0.57Zr0.43O2 (HZO) field-effect transistor (FeFET) with good linearity. Our FeFET operates with low writing energy (fJ) and fast programming time (40 ns). Retention measurements have been performed over 4 bit depth with low noise (1%) in the tungsten oxide (WO x ) readout channel. By adjusting the channel thickness from 15 to 8 nm, the on/off ratio of the FeFET can be engineered from 1 to 200% with an on-resistance ideally >100 kΩ, depending on the channel geometry. The device concept is using earth-abundant materials and is compatible with a back end of line (BEOL) integration into complementary metal–oxide–semiconductor (CMOS) processes. It has therefore a great potential for the fabrication of high-density, large-scale integrated arrays of artificial analog synapses. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c00877 |