Moniliophthora perniciosa development: key genes involved in stress-mediated cell wall organization and autophagy

Moniliophthora perniciosa is a basidiomycete responsible for the witches' broom disease in cacao (Theobroma cacao L.). Chitin synthase (CHS), chitinase (CHIT) and autophagy (ATG) genes have been associated to stress response preceding the formation of basidiocarp. An analysis of literature mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2020-07, Vol.154, p.1022-1035
Hauptverfasser: de Andrade Silva, Edson Mario, Reis, Sara Pereira Menezes, Argolo, Caio Suzart, Gomes, Dayane Santos, Barbosa, Ceslaine Santos, Gramacho, Karina Peres, Ribeiro, Lidiane Figueredo, Silva, Raner José Santana, Micheli, Fabienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Moniliophthora perniciosa is a basidiomycete responsible for the witches' broom disease in cacao (Theobroma cacao L.). Chitin synthase (CHS), chitinase (CHIT) and autophagy (ATG) genes have been associated to stress response preceding the formation of basidiocarp. An analysis of literature mining, interactomics and gene expression was developed to identify the main proteins related to development, cell wall organization and autophagy in M. perniciosa. TORC2 complex elements were identified and were involved in the response to the nutrient starvation during the fungus development stages preceding the basidiocarp formation. This complex interacted with target proteins related to cell wall synthesis and to polarization and cell division (FKS1, CHS, CDC42, ROM2). Autolysis and autophagy processes were associated to CHIT2, ATG8 and to the TORC1 complex (TOR1 and KOG1), which is central in the upstream signalization of the stress response due to nutrient starvation and growth regulation. Other important elements that participate to steps preceding basidiocarp formation were also identified (KOG1, SSZ1, GDI1, FKS1, CCD10, CKS1, CDC42, RHO1, AVO1, BAG7). Similar gene expression patterns during fungus reproductive structure formation and when treated by rapamycin (a nutritional related-autophagy stress agent) were observed: cell division related-genes were repressed while those related to autolysis/autophagy were overexpressed.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2020.03.125