Adifor 2.0: automatic differentiation of Fortran 77 programs
Numerical codes that calculate not only a result, but also the derivatives of the variables with respect to each other, facilitate sensitivity analysis, inverse problem solving, and optimization. The paper considers how Adifor 2.0, which won the 1995 Wilkinson Prize for Numerical Software, can autom...
Gespeichert in:
Veröffentlicht in: | IEEE computational science & engineering 1996-01, Vol.3 (3), p.18-32 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical codes that calculate not only a result, but also the derivatives of the variables with respect to each other, facilitate sensitivity analysis, inverse problem solving, and optimization. The paper considers how Adifor 2.0, which won the 1995 Wilkinson Prize for Numerical Software, can automatically differentiate complicated Fortran code much faster than a programmer can do it by hand. The Adifor system has three main components: the AdiFor preprocessor, the ADIntrinsics exception-handling system, and the SparsLinC library. |
---|---|
ISSN: | 1070-9924 1558-190X |
DOI: | 10.1109/99.537089 |