Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors
In the present study, several mixed quantum-classical (MQC) methods are applied to on-the-fly nonadiabatic molecular dynamics simulations of hole transport in molecular organic semiconductors (OSCs). The tested MQC methods contain the mean-field Ehrenfest (MFE), trajectory surface hopping (TSH) appr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-04, Vol.16 (4), p.2071-2084 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, several mixed quantum-classical (MQC) methods are applied to on-the-fly nonadiabatic molecular dynamics simulations of hole transport in molecular organic semiconductors (OSCs). The tested MQC methods contain the mean-field Ehrenfest (MFE), trajectory surface hopping (TSH) approaches based on Tully’s fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH), the latter in the diabatic/adiabatic representation, and a Landau–Zener type trajectory surface hopping (LZSH). We also tested several correction schemes which were proposed to identify trivial crossings and to remove unphysical long-range charge transfers due to decoherence corrections. In addition, several cost-effective approaches for the nuclear velocity adjustment after an energy-allowed/energy-forbidden hop are investigated with respect to detailed balance and internal consistency conditions. To model a broad spectrum of OSCs with different charge transport characteristics, we derived from the anthracene structural model the construction of two additional models by uniformly scaling down the electronic couplings by the factors of 0.1 and 0.5. Anthracene shows a bandlike charge transport mechanism, characterized by slightly delocalized charge carriers ‘diffusing’ through the crystal. For smaller couplings, the mechanism changes to a hopping type, characteristically differing in the charge delocalization and temperature dependence. The MFE and corrected adiabatic TSH approaches are able to quantitatively reproduce the expected behavior, while the diabatic LZSH method fails for large couplings, as do approaches which are based on the hopping of localized charge between neighboring sites. Moreover, we find that while the hole mobility of the anthracene crystal simulated using the celebrated Marcus theory is in good agreement with the experimental value, its agreement has to be regarded as an accident due to the overestimation of the prefactor in the Marcus rate equation. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.9b01271 |