Endurance exercise‐induced and mental fatigue and the brain

New Findings What is the topic of this review? It provides an overview of the recent papers linking brain neurotransmission with exercise‐induced and/or mental fatigue. What advances does it highlight? The noradrenergic neurotransmitter system hastens central fatigue during prolonged exercise, a fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2021-12, Vol.106 (12), p.2294-2298, Article 2294
Hauptverfasser: Meeusen, Romain, Van Cutsem, Jeroen, Roelands, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New Findings What is the topic of this review? It provides an overview of the recent papers linking brain neurotransmission with exercise‐induced and/or mental fatigue. What advances does it highlight? The noradrenergic neurotransmitter system hastens central fatigue during prolonged exercise, a finding that coincides with a faster rate of increase in the rating of perceived exertion. 2) Mental fatigue affects several neurotransmitter systems, with presumably an important role for dopamine and adenosine, in multiple brain regions such as the prefrontal cortex and the anterior cingulate cortex. In sports and exercise science, fatigue is an elusive concept that has important implications in performance during exercise. It has been described in many ways (tiredness, exhaustion, lethargy or weariness) and describes a physical and/or mental state of being tired and lack of energy. Exercise‐induced fatigue can be defined as an acute impairment of exercise performance, and a distinction has been made between peripheral and central fatigue. Mental fatigue can be defined as a psychobiological state caused by prolonged exertion that has the potential to reduce cognitive performance and exercise performance. Recent studies have given clear indications that brain catecholamines are involved in the onset of fatigue during endurance exercise. Evidence is provided indicating that the noradrenergic neurotransmitter system hastens central fatigue, a finding that coincides with a faster rate of increase in the rating of perceived exertion. Brain neurotransmission is also suggested to play an important role in mental fatigue. Several neurotransmitter systems might be implicated (with the most important role for dopamine and adenosine) in multiple brain regions, such as the prefrontal cortex and the anterior cingulate cortex, and the summation of these alterations might explain the impairment in endurance performance in a mentally fatigued state. Obviously, we have to keep in mind that fatigue is a very complex construct and that, besides brain neurochemistry, several other factors play a role in its onset.
ISSN:0958-0670
1469-445X
DOI:10.1113/EP088186