Type-II Ising pairing in few-layer stanene

Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-03, Vol.367 (6485), p.1454-1457
Hauptverfasser: Falson, Joseph, Xu, Yong, Liao, Menghan, Zang, Yunyi, Zhu, Kejing, Wang, Chong, Zhang, Zetao, Liu, Hongchao, Duan, Wenhui, He, Ke, Liu, Haiwen, Smet, Jurgen H, Zhang, Ding, Xue, Qi-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1457
container_issue 6485
container_start_page 1454
container_title Science (American Association for the Advancement of Science)
container_volume 367
creator Falson, Joseph
Xu, Yong
Liao, Menghan
Zang, Yunyi
Zhu, Kejing
Wang, Chong
Zhang, Zetao
Liu, Hongchao
Duan, Wenhui
He, Ke
Liu, Haiwen
Smet, Jurgen H
Zhang, Ding
Xue, Qi-Kun
description Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is predicted to diverge at low temperatures. Here, we show that the recently discovered superconductor few-layer stanene, epitaxially strained gray tin (α-Sn), exhibits a distinct type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry-breaking. The in-plane upper critical field is strongly enhanced at ultralow temperature and reveals the predicted upturn.
doi_str_mv 10.1126/science.aax3873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2377348377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376807360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7af9f6c24c0ef11b358e6b2cce272dd6a10d9c26b65cab37f6b20d8e895d8e783</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EoqUws6FILAjJrT8S2xlRxUekSixlthznjFKlSbAbQf97HBEYWN4N73endw-ha0qWlDKxCraG1sLSmC-uJD9Bc0ryDOeM8FM0J4QLrIjMZugihB0h0cv5OZpxRkWWMjlH99tjD7gokiLU7XvSm9qPs24TB5-4MUfwSTiYFlq4RGfONAGuprlAb0-P2_UL3rw-F-uHDbYpZwcsjcudsCy1BBylJc8UiJJZC0yyqhKGkiq3TJQis6bk0kWTVApUnkWVii_Q3c_d3ncfA4SD3tfBQtPEFN0QNONS8lSNukC3_9BdN_g2phspEV_ngkRq9UNZ34Xgwene13vjj5oSPdaopxr1VGPcuJnuDuUeqj_-tzf-DY-lbmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376807360</pqid></control><display><type>article</type><title>Type-II Ising pairing in few-layer stanene</title><source>Science Magazine</source><creator>Falson, Joseph ; Xu, Yong ; Liao, Menghan ; Zang, Yunyi ; Zhu, Kejing ; Wang, Chong ; Zhang, Zetao ; Liu, Hongchao ; Duan, Wenhui ; He, Ke ; Liu, Haiwen ; Smet, Jurgen H ; Zhang, Ding ; Xue, Qi-Kun</creator><creatorcontrib>Falson, Joseph ; Xu, Yong ; Liao, Menghan ; Zang, Yunyi ; Zhu, Kejing ; Wang, Chong ; Zhang, Zetao ; Liu, Hongchao ; Duan, Wenhui ; He, Ke ; Liu, Haiwen ; Smet, Jurgen H ; Zhang, Ding ; Xue, Qi-Kun</creatorcontrib><description>Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is predicted to diverge at low temperatures. Here, we show that the recently discovered superconductor few-layer stanene, epitaxially strained gray tin (α-Sn), exhibits a distinct type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry-breaking. The in-plane upper critical field is strongly enhanced at ultralow temperature and reveals the predicted upturn.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aax3873</identifier><identifier>PMID: 32165427</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Ising model ; Low temperature ; Magnetic fields ; Molybdenum ; Molybdenum disulfide ; Symmetry ; Tin</subject><ispartof>Science (American Association for the Advancement of Science), 2020-03, Vol.367 (6485), p.1454-1457</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7af9f6c24c0ef11b358e6b2cce272dd6a10d9c26b65cab37f6b20d8e895d8e783</citedby><cites>FETCH-LOGICAL-c432t-7af9f6c24c0ef11b358e6b2cce272dd6a10d9c26b65cab37f6b20d8e895d8e783</cites><orcidid>0000-0002-4844-2460 ; 0000-0002-8334-8349 ; 0000-0001-9685-2547 ; 0000-0002-1047-4889 ; 0000-0002-4719-8873 ; 0000-0001-6787-3453 ; 0000-0003-0331-3814 ; 0000-0002-0007-3117 ; 0000-0003-3183-9864 ; 0000-0002-4129-1284 ; 0000-0001-9108-3013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32165427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falson, Joseph</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liao, Menghan</creatorcontrib><creatorcontrib>Zang, Yunyi</creatorcontrib><creatorcontrib>Zhu, Kejing</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Zetao</creatorcontrib><creatorcontrib>Liu, Hongchao</creatorcontrib><creatorcontrib>Duan, Wenhui</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Liu, Haiwen</creatorcontrib><creatorcontrib>Smet, Jurgen H</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><title>Type-II Ising pairing in few-layer stanene</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is predicted to diverge at low temperatures. Here, we show that the recently discovered superconductor few-layer stanene, epitaxially strained gray tin (α-Sn), exhibits a distinct type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry-breaking. The in-plane upper critical field is strongly enhanced at ultralow temperature and reveals the predicted upturn.</description><subject>Ising model</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Symmetry</subject><subject>Tin</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EoqUws6FILAjJrT8S2xlRxUekSixlthznjFKlSbAbQf97HBEYWN4N73endw-ha0qWlDKxCraG1sLSmC-uJD9Bc0ryDOeM8FM0J4QLrIjMZugihB0h0cv5OZpxRkWWMjlH99tjD7gokiLU7XvSm9qPs24TB5-4MUfwSTiYFlq4RGfONAGuprlAb0-P2_UL3rw-F-uHDbYpZwcsjcudsCy1BBylJc8UiJJZC0yyqhKGkiq3TJQis6bk0kWTVApUnkWVii_Q3c_d3ncfA4SD3tfBQtPEFN0QNONS8lSNukC3_9BdN_g2phspEV_ngkRq9UNZ34Xgwene13vjj5oSPdaopxr1VGPcuJnuDuUeqj_-tzf-DY-lbmA</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Falson, Joseph</creator><creator>Xu, Yong</creator><creator>Liao, Menghan</creator><creator>Zang, Yunyi</creator><creator>Zhu, Kejing</creator><creator>Wang, Chong</creator><creator>Zhang, Zetao</creator><creator>Liu, Hongchao</creator><creator>Duan, Wenhui</creator><creator>He, Ke</creator><creator>Liu, Haiwen</creator><creator>Smet, Jurgen H</creator><creator>Zhang, Ding</creator><creator>Xue, Qi-Kun</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4844-2460</orcidid><orcidid>https://orcid.org/0000-0002-8334-8349</orcidid><orcidid>https://orcid.org/0000-0001-9685-2547</orcidid><orcidid>https://orcid.org/0000-0002-1047-4889</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid><orcidid>https://orcid.org/0000-0001-6787-3453</orcidid><orcidid>https://orcid.org/0000-0003-0331-3814</orcidid><orcidid>https://orcid.org/0000-0002-0007-3117</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4129-1284</orcidid><orcidid>https://orcid.org/0000-0001-9108-3013</orcidid></search><sort><creationdate>20200327</creationdate><title>Type-II Ising pairing in few-layer stanene</title><author>Falson, Joseph ; Xu, Yong ; Liao, Menghan ; Zang, Yunyi ; Zhu, Kejing ; Wang, Chong ; Zhang, Zetao ; Liu, Hongchao ; Duan, Wenhui ; He, Ke ; Liu, Haiwen ; Smet, Jurgen H ; Zhang, Ding ; Xue, Qi-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7af9f6c24c0ef11b358e6b2cce272dd6a10d9c26b65cab37f6b20d8e895d8e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ising model</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Symmetry</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falson, Joseph</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liao, Menghan</creatorcontrib><creatorcontrib>Zang, Yunyi</creatorcontrib><creatorcontrib>Zhu, Kejing</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zhang, Zetao</creatorcontrib><creatorcontrib>Liu, Hongchao</creatorcontrib><creatorcontrib>Duan, Wenhui</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Liu, Haiwen</creatorcontrib><creatorcontrib>Smet, Jurgen H</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falson, Joseph</au><au>Xu, Yong</au><au>Liao, Menghan</au><au>Zang, Yunyi</au><au>Zhu, Kejing</au><au>Wang, Chong</au><au>Zhang, Zetao</au><au>Liu, Hongchao</au><au>Duan, Wenhui</au><au>He, Ke</au><au>Liu, Haiwen</au><au>Smet, Jurgen H</au><au>Zhang, Ding</au><au>Xue, Qi-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type-II Ising pairing in few-layer stanene</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>367</volume><issue>6485</issue><spage>1454</spage><epage>1457</epage><pages>1454-1457</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Spin-orbit coupling has proven indispensable in the realization of topological materials and, more recently, Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry-breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is predicted to diverge at low temperatures. Here, we show that the recently discovered superconductor few-layer stanene, epitaxially strained gray tin (α-Sn), exhibits a distinct type of Ising pairing between carriers residing in bands with different orbital indices near the Γ-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry-breaking. The in-plane upper critical field is strongly enhanced at ultralow temperature and reveals the predicted upturn.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32165427</pmid><doi>10.1126/science.aax3873</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4844-2460</orcidid><orcidid>https://orcid.org/0000-0002-8334-8349</orcidid><orcidid>https://orcid.org/0000-0001-9685-2547</orcidid><orcidid>https://orcid.org/0000-0002-1047-4889</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid><orcidid>https://orcid.org/0000-0001-6787-3453</orcidid><orcidid>https://orcid.org/0000-0003-0331-3814</orcidid><orcidid>https://orcid.org/0000-0002-0007-3117</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4129-1284</orcidid><orcidid>https://orcid.org/0000-0001-9108-3013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-03, Vol.367 (6485), p.1454-1457
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2377348377
source Science Magazine
subjects Ising model
Low temperature
Magnetic fields
Molybdenum
Molybdenum disulfide
Symmetry
Tin
title Type-II Ising pairing in few-layer stanene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type-II%20Ising%20pairing%20in%20few-layer%20stanene&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Falson,%20Joseph&rft.date=2020-03-27&rft.volume=367&rft.issue=6485&rft.spage=1454&rft.epage=1457&rft.pages=1454-1457&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aax3873&rft_dat=%3Cproquest_cross%3E2376807360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376807360&rft_id=info:pmid/32165427&rfr_iscdi=true