Classification of ischemic and non-ischemic cardiac events in Holter recordings based on the continuous wavelet transform
Holter recordings are widely used to detect cardiac events that occur transiently, such as ischemic events. Much effort has been made to detect early ischemia, thus preventing myocardial infarction. However, after detection, classification of ischemia has still not been fully solved. The main diffic...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2020-05, Vol.58 (5), p.1069-1078 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Holter recordings are widely used to detect cardiac events that occur transiently, such as ischemic events. Much effort has been made to detect early ischemia, thus preventing myocardial infarction. However, after detection, classification of ischemia has still not been fully solved. The main difficulty relies on the false positives produced because of non-ischemic events, such as changes in the heart rate, the intraventricular conduction or the cardiac electrical axis. In this work, the classification of ischemic and non-ischemic events from the long-term ST database has been improved, using novel spectral parameters based on the continuous wavelet transform (CWT) together with temporal parameters (such as ST level and slope, T wave width and peak, R wave peak, QRS complex width). This was achieved by using a nearest neighbour classifier of six neighbours. Results indicated a sensitivity and specificity of 84.1% and 92.9% between ischemic and non-ischemic events, respectively, resulting a 10% increase of the sensitivity found in the literature. Extracted features based on the CWT applied on the ECG in the frequency band 0.5–4 Hz provided a substantial improvement in classifying ischemic and non-ischemic events, when comparing with the same classifier using only temporal parameters.
Graphical Abstract
In this work it is improved the classification of ischemic and non-ischemic events. The main difficulty of ischemic detectors relies on the false positives produced because of non-ischemic events. After a preprocessing stage, temporal and spectral parameters are extracted from events of the Long Term ST Database. The novel parameters proposed in this work are extracted from the Continuous Wavelet Transform. A nearest Neighbor Classifier is used, obtaining a sensitivity and specificity of 84.1% and 92.9%, respectively. |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-020-02134-8 |