Ktrim: an extra-fast and accurate adapter- and quality-trimmer for sequencing data
Abstract Motivation Next-generation sequencing (NGS) data frequently suffer from poor-quality cycles and adapter contaminations therefore need to be preprocessed before downstream analyses. With the ever-growing throughput and read length of modern sequencers, the preprocessing step turns to be a bo...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-06, Vol.36 (11), p.3561-3562 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Next-generation sequencing (NGS) data frequently suffer from poor-quality cycles and adapter contaminations therefore need to be preprocessed before downstream analyses. With the ever-growing throughput and read length of modern sequencers, the preprocessing step turns to be a bottleneck in data analysis due to unmet performance of current tools. Extra-fast and accurate adapter- and quality-trimming tools for sequencing data preprocessing are therefore still of urgent demand.
Results
Ktrim was developed in this work. Key features of Ktrim include: built-in support to adapters of common library preparation kits; supports user-supplied, customized adapter sequences; supports both paired-end and single-end data; supports parallelization to accelerate the analysis. Ktrim was ∼2–18 times faster than current tools and also showed high accuracy when applied on the testing datasets. Ktrim could thus serve as a valuable and efficient tool for short-read NGS data preprocessing.
Availability and implementation
Source codes and scripts to reproduce the results descripted in this article are freely available at https://github.com/hellosunking/Ktrim/, distributed under the GPL v3 license.
Contact
sunkun@szbl.ac.cn
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa171 |