Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal–Organic Framework

Graphene nanoribbons (GNRs), narrow and straight-edged stripes of graphene, attract a great deal of attention because of their excellent electronic and magnetic properties. As of yet, there is no fabrication method for GNRs to satisfy both precision at the atomic scale and scalability, which is crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-03, Vol.142 (12), p.5509-5514
Hauptverfasser: Kitao, Takashi, MacLean, Michael W. A, Nakata, Kazuki, Takayanagi, Masayoshi, Nagaoka, Masataka, Uemura, Takashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene nanoribbons (GNRs), narrow and straight-edged stripes of graphene, attract a great deal of attention because of their excellent electronic and magnetic properties. As of yet, there is no fabrication method for GNRs to satisfy both precision at the atomic scale and scalability, which is critical for fundamental research and future technological development. Here, we report a methodology for bulk-scale synthesis of GNRs with atomic precision utilizing a metal–organic framework (MOF). The GNR was synthesized by the polymerization of perylene (PER) or its derivative within the nanochannels of the MOF. Molecular dynamics simulations showed that PER was uniaxially aligned along the nanochannels of the MOF through host–guest interactions, which allowed for regulated growth of the nanoribbons. A series of characterizations of the GNR, including NMR, UV/vis/NIR, and Raman spectroscopy measurements, confirmed the formation of the GNR with well-controlled edge structure and width.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c00467