Alpinia oxyphylla–Schisandra chinensis Herb Pair Alleviates Amyloid-β Induced Cognitive Deficits via PI3K/Akt/Gsk-3β/CREB Pathway
Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, threatens people’s health. Based on the theory of traditional Chinese medicine (TCM) efficacy and treatment theory, we first proposed the Alpinia oxyphylla–Schisandra chinensis herb pair (ASHP) for finding a candidate of AD...
Gespeichert in:
Veröffentlicht in: | Neuromolecular medicine 2020-09, Vol.22 (3), p.370-383 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, threatens people’s health. Based on the theory of traditional Chinese medicine (TCM) efficacy and treatment theory, we first proposed the
Alpinia oxyphylla–Schisandra chinensis
herb pair (ASHP) for finding a candidate of AD treatment. This study aimed at exploring the effects of ASHP on improving the cognitive function and neurodegeneration, and revealing the possible mechanism. In this study, an amyloid-β (Aβ) induced AD model was established in mice via intracerebroventricular injection. The Y-maze test and Morris water maze test were carried out to observe the behavioral change of mice, which showed that ASHP significantly ameliorated cognitive impairment. In addition, ASHP reduced amyloid-β deposition and downregulated the hyperphosphorylation of tau via immunofluorescence assay and western blot analysis, respectively. Subsequently we focused on the PI3K/Akt pathway that is a classical pathway related to nervous system diseases. It also noticeably ASHP improved the histopathological changes in the hippocampus and cortex. Moreover, it was found that ASHP could upregulate the PI3K/Akt/Gsk-3β/CREB signaling pathway in N2a-SwedAPP cells. Taken together, it suggests that ASHP might reverse cognitive deficits and neurodegeneration via PI3K/Akt/Gsk-3β/CREB pathway. |
---|---|
ISSN: | 1535-1084 1559-1174 |
DOI: | 10.1007/s12017-020-08595-2 |