Colorimetric acid phosphatase sensor based on MoO3 nanozyme

Nanozymes, or nanomaterials that mimic the behaviors of enzymes, are highly promising materials for biomedical applications because of their excellent chemical stability under harsh conditions, simple preparation method and lower costs compared with natural enzymes. We herein report the intrinsic ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2020-04, Vol.1105, p.162-168
Hauptverfasser: Lin, Zhen, Zhang, Xiaomin, Liu, Shijun, Zheng, Linlin, Bu, Yemei, Deng, Haohua, Chen, Ruiting, Peng, Huaping, Lin, Xinhua, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanozymes, or nanomaterials that mimic the behaviors of enzymes, are highly promising materials for biomedical applications because of their excellent chemical stability under harsh conditions, simple preparation method and lower costs compared with natural enzymes. We herein report the intrinsic oxidase-mimicking activity of molybdenum oxide nanoparticles (MoO3 NPs). MoO3 NPs catalyzed the oxidation of colorless 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to green product. The catalytic mechanism of the oxidase-mimicking activity of the MoO3 NPs was investigated in detail using electron spin resonance and a radical inhibition method. The oxidation of ABTS stems from 1O2 generated from the interaction between MoO3 NPs and dissolved oxygen in the solution. Acid phosphatase (ACP) catalyzes the hydrolysis of the ascorbic acid 2-phosphate (AAP) substrate to produce ascorbic acid (AA). AA was found to fade the coloration process of the MoO3 NP-mediated ABTS oxidation. By combining the oxidase-mimicking property of the MoO3 NPs and the ACP-catalyzed hydrolysis of AAP, a novel and simple colorimetric method for detecting ACP was established. The linear range for ACP determination is 0.09–7.3 U/L with a detection limit of 0.011 U/L. This new colorimetric method was successfully applied to the detection of ACP in diluted human serum samples and screening of ACP inhibitors. The present study proposes MoO3 NPs as a new oxidase mimic for establishing various biosensing method. Ascorbic acid (AA), the product of the ACP-AA 2-phosphate (AAP) system, interferes with the oxidation of ABTS and inhibits the oxidase-mimicking property of MoO3 NPs, based on which a colorimetric ACP detection method has been established. [Display omitted] •Colorimetric sensor for acid phosphatase detection.•Oxidase-mimicking activity of molybdenum oxide nanoparticles.•Acid phosphatase catalyzes the hydrolysis of the ascorbic acid 2-phosphate.•Ascorbic acid inhibits the catalytic activity of molybdenum oxide nanoparticles.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2020.01.035