Radiocaesium sorption on natural glauconite sands is unexpectedly as strong as on Boom Clay

The Neogene-Paleogene glauconite sands of Belgium cover the Boom Clay deposits that are candidate host for radioactive waste disposal. It is unclear if the highly permeable sand formations may act as an additional barrier for radiocesium (137Cs) or could be added as a complementary sorption sink in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-06, Vol.720, p.137392-137392, Article 137392
Hauptverfasser: Bruneel, Y., Van Laer, L., Brassinnes, S., Smolders, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Neogene-Paleogene glauconite sands of Belgium cover the Boom Clay deposits that are candidate host for radioactive waste disposal. It is unclear if the highly permeable sand formations may act as an additional barrier for radiocesium (137Cs) or could be added as a complementary sorption sink in a surface disposal concept. Glauconite is an Fe-rich phyllosilicate that is mainly present as 250–125 μm sized pellets in sand, it is unknown to what extent and how fast these pellets may bind 137Cs. Pelletized clays embedded in sand may have poorly accessible high affinity sites for 137Cs. The 137Cs sorption on 11 different glauconite sands was measured in batch in a background solution of 0.1 M CaCl2 and 0.5 mM KCl. The log transformed 137Cs distribution coefficient Kd (L kg−1) after 30 days reaction ranged 3.4–4.3, surprisingly close to the Kd of the Boom Clay (3.5). Isolated glauconite fractions exhibited similar 137Cs sorption potentials (log Kd 4.1–4.3) as the reference Illite du Puy (4.4). The small Kd variation among the Neogene-Paleogene sands was explained by its glauconite content (r = 0.82). The 137Cs sorption kinetics (1–57 days) of milled pellets (
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.137392